5 research outputs found

    On the Usefulness of Synthetic Tabular Data Generation

    Full text link
    Despite recent advances in synthetic data generation, the scientific community still lacks a unified consensus on its usefulness. It is commonly believed that synthetic data can be used for both data exchange and boosting machine learning (ML) training. Privacy-preserving synthetic data generation can accelerate data exchange for downstream tasks, but there is not enough evidence to show how or why synthetic data can boost ML training. In this study, we benchmarked ML performance using synthetic tabular data for four use cases: data sharing, data augmentation, class balancing, and data summarization. We observed marginal improvements for the balancing use case on some datasets. However, we conclude that there is not enough evidence to claim that synthetic tabular data is useful for ML training.Comment: Data-centric Machine Learning Research (DMLR) Workshop at the 40th International Conference on Machine Learning (ICML

    Black-box Coreset Variational Inference

    Full text link
    Recent advances in coreset methods have shown that a selection of representative datapoints can replace massive volumes of data for Bayesian inference, preserving the relevant statistical information and significantly accelerating subsequent downstream tasks. Existing variational coreset constructions rely on either selecting subsets of the observed datapoints, or jointly performing approximate inference and optimizing pseudodata in the observed space akin to inducing points methods in Gaussian Processes. So far, both approaches are limited by complexities in evaluating their objectives for general purpose models, and require generating samples from a typically intractable posterior over the coreset throughout inference and testing. In this work, we present a black-box variational inference framework for coresets that overcomes these constraints and enables principled application of variational coresets to intractable models, such as Bayesian neural networks. We apply our techniques to supervised learning problems, and compare them with existing approaches in the literature for data summarization and inference.Comment: NeurIPS 202

    Quantifying Privacy Loss of Human Mobility Graph Topology

    Get PDF
    Abstract Human mobility is often represented as a mobility network, or graph, with nodes representing places of significance which an individual visits, such as their home, work, places of social amenity, etc., and edge weights corresponding to probability estimates of movements between these places. Previous research has shown that individuals can be identified by a small number of geolocated nodes in their mobility network, rendering mobility trace anonymization a hard task. In this paper we build on prior work and demonstrate that even when all location and timestamp information is removed from nodes, the graph topology of an individual mobility network itself is often uniquely identifying. Further, we observe that a mobility network is often unique, even when only a small number of the most popular nodes and edges are considered. We evaluate our approach using a large dataset of cell-tower location traces from 1 500 smartphone handsets with a mean duration of 430 days. We process the data to derive the top−N places visited by the device in the trace, and find that 93% of traces have a unique top−10 mobility network, and all traces are unique when considering top−15 mobility networks. Since mobility patterns, and therefore mobility networks for an individual, vary over time, we use graph kernel distance functions, to determine whether two mobility networks, taken at different points in time, represent the same individual. We then show that our distance metrics, while imperfect predictors, perform significantly better than a random strategy and therefore our approach represents a significant loss in privacy.</jats:p
    corecore